Horizon 4 Tuning Guide

Part 2 - Road Tuning

This part explains how to setup cars in a way that they will work good for road and street racing.

 

This also serves a basis for off-road tuning which will be covered in part 3 so make sure to read this first before advancing to these topics.

Understanding Tuning Relevant Car Properties

As in Part 1 explained car type, body type and drive type are the most important factors when it comes to tuning, but there are also other individual car properties that have great impact on the tuning, most notable are power and weight.

The following table gives an overview which car property affects which tuning area. Please refer to the related section in the tuning guide for detailed explanations.

Car Property           Tires        Gearing       Alignment         ARBs         Springs         Dampers       Aero        Brakes       Diff

                                                                                           

Car Type                      ✓                                                                                                                                                        ✓

Body Type                                                                 ✓                     ✓                  ✓                     ✓                                                      ✓

Drive Type                   ✓                                           ✓                     ✓                  ✓                     ✓                  ✓                 ✓             ✓

Power                                                ✓                                             ✓1                ✓1                                         ✓1

Weight                                                                                               ✓                  ✓                     ✓                  ✓                    

Chassis Reinf.                                                                                   ✓                  ✓                            

Tire Compound          ✓         

Tire Width                                                                   ✓                                        ✓

Aero Kits                                                                                                                ✓                    ✓                   ✓

only in special cases

Tires

Tire pressure tuning first and foremost depends on the used tire compound. The general rule here is the softer the tire compound the higher tire pressure is required. Reasoning for that is that besides grip tires also provide a basic level of rigidity and therefore control. Softer tire compounds like Sport or Race compound provide more grip but also have less rigidity than Stock or Street compound. Increased tire pressure compensates for lower level of rigidity of softer compounds.

Generally for FR (front engine RWD) cars front and rear tire pressures should be the same. Having different tire pressures on front and rear tires creates over- or understeer effects and is only required when tuning for speed, grip or specific tracks.

Tire Compound      Front Tire Pressure      Rear  Tire Pressure

                                                (FR)                                  (FR)

Stock                                      28.0                                  28.0

Street                                     28.0                                  28.0

Sport                                      28.5                                  28.5

Rally / Snow                          28.5                                  28.5

Oldtimer Race                      28.5                                  28.5

Rally Race                              29.0                                  29.0

Race                                       29.0                                  29.0

Race  Horizon                       29.0                                  29.0

Drag                                       29.5                                  29.5

If you are running on stock tire compound keep in my mind that the stock tire compound may not be Stock compound for all cars. For most race cars the stock tire compound is Race compound (only Drag compound is available as upgrade), likewise for some sports cars the stock tire compound is Sport compound (only Race and Drag compound available as upgrade). Set the tire pressures accordingly.

Note: This method will provide peak tire performance starting 3th lap, the first two laps are needed to warm-up the tires.

AWD and FWD Cars

AWD and FWD cars require lower tire pressure on the front and higher tire pressure on the rear as compared to RWD cars to stabilize the car while turning. 

                            Front Tire Pressure Offset      Rear  Tire Pressure Offset

AWD                                        -1.0                                           +1.0

FWD                                        -2.0                                           +2.0

Mid and Rear Engine Cars

Mid and rear engine cars require higher tire pressures on the front and lower tire pressures on the rear as compared to regular front engine cars.

                            Front Tire Pressure Offset      Rear  Tire Pressure Offset

Mid Engine                             +1.0                                             -1.0

Rear Engine                            +2.0                                             -2.0

Race Cars and High Performance Cars

Aside from tire compound, drivetrain and engine position tire pressure tuning also depends on the type of car as high performance cars and race cars require higher tire pressure for improved control than street or sports cars. That means for high performance cars and race cars you need to add an additional 0.5 psi on top of the base tire pressure for best tire performance.

Car Type                            Tire Pressure Offset

High Performance Car                 +0.5

Race Car                                         +0.5

Race Truck                                     +0.5

Prototype Race Car                      +0.5

Open Wheel Race Car                  +0.5

------------------------------------------------------------

Off-road Race Truck                     +0.5 

Alignment

Camber

Camber settings are car type specific. As a general rule of thumb: older cars require less static camber because the more flexible chassis / suspension creates more dynamic camber. Modern cars with more rigid chassis / suspension can be run with higher camber. 

Static camber should be set so that the (dynamic) camber on the apex when you start accelerating out of a turn is around 0 to maximize tire contact patch which in turn provides maximum tire grip. This is especially important for the driven wheels. 

Front camber is usually higher than rear. Exception are open-wheel cars with its very unique suspension geometry that requires higher rear camber.

Car Type                               Usual Camber Range

                                               (FR Race Suspension)

Utility Car                                     -3.0 to  0.0

Street Car                                     -3.0 to  0.0

Sports Car                                    -3.0 to  0.0

High Performance Car               -2.5 to -1.0

Race Car                                       -2.5 to -1.5

Race Truck                                    -2.0 to 0.0

Prototype Race Car                     -2.0 to -1.0

Open Wheel Race Car                -3.5 to -1.5

------------------------------------------------------------------------

Rally Car                                       -2.5 to -0.5

Off-road Car                                 -2.5 to -1.0

Off-road Truck                              -3.0 to -2.0

Open Wheel Off-road Car          -3.0 to -1.0

Off-road Race Truck                    -2.5 to -2.0

The ranges given account for different body types within the car type.

​Rally and off-road suspension generally require higher camber than race suspension. Simply reduce race suspension front camber by 1.0 and rear camber by 0.5 to get required camber for rally or off-road suspension.

Car Type                               Usual Camber Range

                                        (FR Rally / Off-road Suspension)

Utility Car                                     -4.0 to -0.5

Street Car                                     -4.0 to -0.5

Sports Car                                    -4.0 to -0.5

High Performance Car               -3.5 to -1.5

Race Car                                       -3.5 to -2.0

Race Truck                                    -3.0 to -0.5

Prototype Race Car                     -3.0 to -1.5

Open Wheel Race Car                -4.5 to -2.0

-----------------------------------------------------------------------------

Rally Car                                        -3.5 to -1.0

Off-road Car                                 -3.5 to -1.5

Off-road Truck                             -4.0 to -2.5

Open Wheel Off-road Car          -4.0 to -1.5

Off-road Race Truck                     -3.0 to -0.5

The ranges given account for different body types within the car type.

AWD and FWD Cars

FWD cars require more front camber than RWD cars to compensate for more front body roll. AWD cars require more front and rear camber than RWD cars.

                           Front Camber Offset         Rear Camber Offset

AWD                                  -0.2                                     -0.2

FWD                                  -0.4                                       0.0

Mid and Rear Engine Cars

Mid engine cars require higher front and rear camber and rear engine cars require higher rear camber than regular front engine cars.

                           Front Camber Offset         Rear Camber Offset

Mid Engine                        -0.2                                     -0.2

Rear Engine                        0.0                                     -0.4

​Keep in my mind that tire width directly influence camber settings. This is due to wider tires increase contact patch, so for optimal grip camber needs to be reduced as well.

Car Property              Change             Effect on Camber

Front Tire Width         Increase           Reduce front camber

Front Tire Width         Decrease         Increase front camber

Rear Tire Width          Increase            Reduce rear camber

Rear Tire Width          Decrease          Increase rear camber

Toe

I usually don't touch toe as this from my experience creates almost always unwanted imbalance during turning.

The only exception is that I use rear toe-in (max. -0.3) for older road and off-road cars as I find this improves accelerating out of turns, i.e. reduces on-throttle understeer.

Car Type                                    Rear Toe

Utility Car                                    -0.3-0.0

Street Car                                    -0.3-0.0

Sports Car                                   -0.3-0.0

High Performance Car                  0.0

Race Car                                          0.0

Race Truck                                      0.0

Prototype Race Car                       0.0 

Open Wheel Race Car                   0.0

--------------------------------------------------------

Rally Car                                      -0.3-0.0

Off-road Car                               -0.3-0.0 

Off-road Truck                           -0.3-0.0 

Open Wheel Off-road Car       -0.3-0.0

Off-road Race Truck                 -0.3-0.0

The ranges given account for different body types within the car type.

Caster

Caster is also a car type specific setting. As a general rule of thumb when using race suspension heavy off-road cars like off-road trucks require low caster, road and race cars require medium caster and lighter rally or off-road cars like buggies require high caster. 

Car Type                                    Caster

                                          (Race Suspension)

Utility Car                                       5.0

Street Car                                       5.0

Sports Car                                      5.0

High Performance Car                 5.0 

Race Car                                         5.0

Race Truck                                     5.0

Prototype Race Car                      5.0

Open Wheel Race Car                  5.0

--------------------------------------------------------------

Rally Car                                      5.0/6.5

Off-road Car                                  5.0

Off-road Truck                           2.0/5.0

Open Wheel Off-road Car            6.5

Off-road Race Car                          6.5

Off-road Race Truck                  2.0/5.0

The ranges given account for different body types within the car type.

For most cars rally and off-road suspension require different caster settings due to different suspension geometry compared to race suspension. As a general rule of thumb road, race and rally cars require high caster, off-road cars and trucks require medium caster and off-road race cars and trucks require low caster. 

Car Type                                    Caster

                               (Rally / Off-road Suspension)

Utility Car                                    4.0-6.5

Street Car                                    4.0-6.5

Sports Car                                      6.5

High Performance Car                 6.5 

Race Car                                         6.5

Race Truck                                     5.0

Prototype Race Car                      6.5

Open Wheel Race Car                  6.5

---------------------------------------------------------------------

Rally Car                                         6.5

Off-road Car                                  4.0

Off-road Truck                           2.0/4.0

Open Wheel Off-road Car           2.0

Off-road Race Truck                     2.0

The ranges given account for different body types within the car type.

Note: For most cars the stock caster is already set to optimal value, so you don't need to change it usually.

Anti-roll Bars

Anti-roll bars (ARBs) control the weight transition between left and right (or inner and outer) wheels during cornering. Softer ARBs create more body roll leading to more weight shifting to the outer wheels. Stiffer ARBs reduce body roll and thus provide less weight shifting during cornering. Soft ARBs provide more grip during cornering but can result into sluggish car behaviour when setup too soft. Stiff ARBs provide more control during cornering but can result into harsh and unpredictable car behaviour when setup too stiff. 

Generally ARBs need to be setup in relation to chassis stiffness and vehicle weight, i.e. the more rigid the chassis is the lower the ARBs can be set. Likewise the less the car weights the lower the ARBs can be set.

20/20 is good middle ground for modern road cars around 3000lbs and 50% weight distribution and corresponds to an ARB stiffness of around 63%. Increase ARBs for cars with more weight and / or less rigid chassis (e.g. older cars). Decrease ARBs for cars with less weight and / or more rigid chassis (e.g. race cars).

Front and rear ARB distribution has a relation to weight distribution, so in general a car with more front weight should have also higher front ARBs than rear. This is however not as simple as 1:1 distribution according to weight distribution because springs and dampers also affect car balance during turning. 

A good starting point for ARB distribution for RWD cars is 1 per 1% weight distribution difference to 50%, i.e. for 51% front weight distribution the front ARB should be 1 higher than the rear ARB. Older cars and muscle cars require higher spread (>1 per 1%) while race cars require lower spread. 

Example: ARBs for a modern RWD road car with 3000lbs @ 51% wd would be:

ARB distribution = 51%-50% = 1% --> 1*1 = 1, divide by 2 to split equally between front and rear --> 0.5

Front: 20 + 0.5 = 20.5 and Rear: 20 - 0.5 = 19.5.

Car Type                         ARB stiffness         ARB distribution

                                                                                      (FR)

Utility Car                             63-66%                      1.00-2.95

Street Car                             63-66%                      0.98-1.50

Sports Car                            61-65%                      0.66-1.00

High Performance Car       40-46%                      0.55-0.65

Race Car                               35-62%                      0.35-0.80

Race Truck                              15%                              0.35

Prototype Race Car             28-48%                      0.25-0.35

Open Wheel Race Car           18%                              0.35

----------------------------------------------------------------------------------------

Rally Car                                61-65%                      0.70-0.77

Off-road Car                         61-65%                      1.45-2.95

Off-road Truck                      61-65%                      1.55-3.00

Open Wheel Off-road Car   61-65%                      1.05-1.15

Off-road Race Truck             61-65%                      1.00-2.53

The ranges given account for different body types within the car type.

ARB Stiffness

ARB stiffness is a metric to calculate ARB base values based on the cars weight and a weight distribution of 50%.

The formula to determine ARBs for a given ARB stiffness and a weight distribution of 50% looks like this:

Base ARB = (Weight / 2) / (200 - 200 * ARB stiffness)

Example: Street Car with 2500 lb and ARB stiffness of 63% and ARB distribution of 1.00:

Base ARB = (2500 / 2) / (200 - 200 * 63%) = 16.89 

 

Depending on the cars weight distribution and ARB distribution front and rear ARBs are distributed around the ARB base value:

Weight Distribution              Front ARB           Rear ARB

          52%                                     17.89                  15.89

          51%                                     17.39                  16.39

          50%                                     16.89                  16.89

          49%                                     16.39                  17.39

          48%                                     15.89                  17.89

FWD Cars

For FWD cars generally ARBs need to be setup in reverse to RWD with regard to ARB distribution. So a good starting point would be -1 per 1% weight distribution for modern road cars around 3000lbs. 

Example: ARBs for a modern FWD street car with 3000lbs @ 60% wd would be:

ARB distribution = 60%-50% = 10% --> 10*-1 = -10, divide by 2 to split equally between front and rear --> -5

Front: 20 + (-5) = 15 and Rear: 20 - (-5) = 25

AWD Cars

AWD cars require a lower ARB distribution than RWD cars to combat inherent understeer. A good starting point is 0.66 -per 1% weight distribution for AWD cars, i.e. for 51% front weight distribution the front ARB should be 0.66 higher than rear ARB.  

Mid and Rear Engine Cars

Mid and rear engine cars require reverse setup of front and rear ARBs as compared to regular front engine cars.

Relevant Car Upgrades

Adding chassis reinforcement upgrade increases chassis rigidity (sport chassis increases chassis rigidity by 3%, race chassis increases chassis rigidity by 6%), i.e. ARBs should be reduced accordingly.

Car Property                       Change                  Effect on ARBs

Weight                                   Increase                       Increase

Weight                                   Decrease                     Decrease

Power                                     Increase                      Increase 

Chassis Reinforcem.              Street                             None

Chassis Reinforcem.               Sport                        Decrease1

Chassis Reinforcem.               Race                         Decrease2 

Reduce ARB stiffness by 3%

2 Reduce ARB stiffness by 6%

Springs

Springs control the weight transition during directional changes and between front and rear wheels during acceleration and braking. Softer springs provide more grip but can lead to sluggish car behaviour during directional changes or locking front wheels under braking and when setup too soft. Stiffer springs provide more control but can lead to harsh unpredictable car behaviour during directional changes or wheel spin when accelerating when setup too stiff.

Spring rates need to be setup in relation to car weight, weight distribution and chassis / suspension stiffness. More weight requires stiffer springs and more flexible chassis / suspension require higher spring rates on the non driven wheels (front for RWD) and lower spring rates on driven wheels (rear for RWD).

Distribution of front and rear spring rates is related to weight distribution, so cars with more front weight will require also higher front spring rates. As with ARBs this is not a simple 1:1 distribution according to weight distribution as for instance the drive wheels are usually run with lower springs rates in relation to non driven wheels to reduce wheel spin. 

As others suggested a good range is between 1/3 and 1/2 of the slider though there are exceptions where you need to run above or below that range.

These are the ranges for spring rates I usually operate (given in percentage of distributed front / rear weight) on RWD cars:

Car Type                          Front Spring Rate           Rear Spring Rate

                                                         (FR Race Suspension)

Utility Car                                 93-100%                             57-80%

Street Car                                 93-100%                             57-80%

Sports Car                                87-98%                               58-80%

High Performance Car           85-93%                               63-84%

Race Car                                    83-93%                               59-85%

Race Truck                                   80%                                    90%

Prototype Race Car                 79-83%                               70-89%

Open Wheel Race Car               66%                                    79%

------------------------------------------------------------------------------------------------

Rally Car                                    80-100%                             57-80%

Off-road Car                             94-100%                             57-80%

Off-road Truck                          94-100%                            57-80%

Open Wheel Off-road Car      94-100%                            57-80%

Off-road Race Truck                94-100%                             57-80%

The ranges given account for different body types within the car type.

Example: RWD road car with 3000lbs @ 52% wd 

front springs would be between: 

3000 / 2 * 52% * 86% = 670 and 

3000 / 2 * 52% * 100% = 780  depending on body type.

For FWD cars simply swap front and rear spring rates. For AWD cars use RWD rear spring rate for front springs and add 0.05-0.9% offset for rear spring rate depending on body type. Older cars require higher offset than modern cars and race cars require a lower offset than productions cars.

For rally suspension simply use half of the springs rates as compared to race suspension since rally suspension in general provides exactly half of the spring rate ranges as race suspension.

For cars with off-road suspension (these are all off-road cars with a stock adjustable suspension) suspension tuning works a little bit different than for race or rally suspension. Instead of using front and rear spring rates that are related to front and rear weight, front and rear springs must be related to available front and rear spring ranges. So a front spring rate of 39% means front springs must be set to 39% of the available front spring range with 0% would be the minimum allowed front spring rate and 100% the maximum allowed front spring rate.

The available front and rear spring range can be calculated by multiplying the cars weight with the (car specific) minimum and maximum front and rear spring rates.

Car Type                          Front Spring Rate           Rear Spring Rate

                                                      (FR Off-road Suspension)

Off-road Car                               39-40%                                6-7%

Off-road Truck                           39-40%                                 6-7%

Open Wheel Off-road Car        39-40%                                6-7%

Off-road Race Truck                 38-39%                                 6-7%

 

The ranges given account for different body types within the car type.

Example: RWD off-road buggy with stock adjustable suspension, 2200lbs, front springs min/max: 77.8/142.6, rear springs min/max: 95.1/142.6  

front springs would be between: 

77.8 + (142.6-77.8) * 39% = 103.1 and 

77.8 + (142.6-77.8) * 40% = 103.7 depending on body type.

AWD and FWD Cars

For AWD cars use the same spring rates as RWD cars. for FWD cars simply swap front and rear spring rates.

Mid and Rear Engine Cars

Mid and rear engine cars require reverse setup of front and rear springs as compared to regular front engine cars.

Relevant Car Upgrades

Adding chassis reinforcement upgrade increases chassis rigidity, i.e. springs should be reduced accordingly.

Increasing tire width also requires springs to be increased to compensate for added grip. For each 10 inch increase in tire width increase springs by 0.5%. This is usually in the range of 0-5lb depending on increased tire width.

Also when adding aero springs need to be increased to compensate for added downforce. However the exact impact of downforce on springs is not simple to determine as it not only involves the amount of added downforce but must also take into account the deviation of downforce from balanced downforce level.

Balanced Downforce

Balanced downforce levels depend on the cars weight distribution and are distributed around the cars aerodynamic ideal front weight distribution of 47%. For a car with 47% front weight distribution and a Standard Forza race aero kit (100-220/220-441) balanced downforce is achieved e.g. when both downforce sliders are set to minimum values (110/220) . The higher you go the more rear downforce is required to achieve balanced downforce, e.g. 165/358 or 198/441. For cars with higher front weight distribution rear downforce slider must be higher than front downforce slider depending on how much the cars front weight distribution differs from 47%. Likewise for cars with lower front weight distribution rear downforce slider must be lower than front downforce slider to achieve balanced downforce levels. For each %1 difference of car weight distribution from 47% rear downforce must be increased or decreased by 1.866667lb.  So balanced downforce levels kind of equalize the deviation of the cars front weight distribution from the ideal 47% front weight distribution by increasing or decreasing rear downforce in relation to front downforce.

 

Usually balanced downforce only affects rear downforce but if balanced aero would require to increase rear downforce beyond maximum possible rear downforce, rear downforce is set to maximum and front aero is reduced instead. Likewise if balanced downforce would require to reduce rear downforce lower than minimum allowed front downforce, rear downforce is set to minimum and front downforce is increased instead.

Example: FWD production car with 64% wd, Standard Forza aerokit (50-100/75-200):

Balanced rear downforce for 75lb front downforce:

137 + (64-47) * 1.866667 = 168.7339 --> 169lb

To sum up the impact of downforce on springs consist of two factors:

  • amount of added downforce: for each 10lb added front downforce increase front springs by 0.5, for each 25lb added rear downforce increase rear springs by 0.5

  • deviation from balanced downforce: for each 2lb difference of front / rear downforce from balanced front / rear downforce increase or decrease front / rear springs by 0.5

Keep in mind that not only adjustable race aero kits provide downforce that has an impact on springs but also non-adjustable stock, street or sports aero kits, albeit much more subtle.

Aero Kit                            Downforce

Stock Front Bumper1             10lb

Street Front Bumper             10lb

Sport Front Bumper              40lb

Stock Rear Wing2                   25lb

Street Rear Wing                    25lb

Sport Rear Wing                     70lb

Stock Rear Bumper1              25lb

Street Rear Bumper               25lb

Sport Rear Bumper                50lb       

 

1 Some off-road cars and trucks don't have stock bumpers, so in this case there is no downforce applied

2 Many cars don't have a stock rear wing, so in this case there is no downforce applied

Example: FWD road car with 2198lb, 64% wd, stock aero (10/25/25), front springs: 563.9, rear springs 370.9

Adding front and rear race aero kit with stock downforce 75/137 (balanced downforce for 64% wd is 75/169)

Front spring offset: (75-10)/10=6.5, 6.5*0.5=3.25

Rear spring offset: (137-25)/25=4.48, 4.48*0.5=2.24,(137-169)/2=-16,-16*0.5=-8, total rear spring offset: 2.24-8=-5.76

New front springs: 563.9 + 3.25 = 567.15

New rear springs: 370.9 - 5.76 = 365.14

Car Property                 Change                 Effect on Springs

Weight                             Increase                       Increase

Weight                            Decrease                      Decrease

Front Tire Width            Increase              Increase front springs

Front Tire Width           Decrease             Decrease front springs

Rear Tire Width              Increase              Increase rear springs

Rear Tire Width             Decrease             Decrease rear springs

Front Downforce           Increase              Increase front springs

Front Downforce           Decrease            Decrease front springs

Rear Downforce             Increase              Increase rear springs

Rear Downforce             Decrease            Decrease rear springs

Chassis Reinforcem.        Street                            None

Chassis Reinforcem.        Sport                Decrease front springs1

Chassis Reinforcem.         Race                Decrease front springs2

Reduce front spring rate by 2.75%

Reduce front spring rate by 5.5%

Ride Height

Ride height works as an additional stabilizing factor like aero and a higher ride height generally allows you to brake and accelerate faster. However raising ride height also raises the center of mass which hurts turning. So there is a sweet spot for setting up the ride height which I call optimal ride height.

The optimal ride height for a car is the lowest ride height possible that is not lower than the car types minimum ride height. Each car type has a minimum ride height that is required to have enough suspension travel during cornering. 

In general for older cars the minimum ride height is higher than for modern cars and for race cars the minimum ride height is lower than for productions cars.

Always keep front and rear ride height level , i.e. keep the sliders aligned. Having front and rear ride height sliders unaligned  creates over- or understeer effects and is only required when tuning for grip, speed or specific tracks.

Car Type                                 Min. Ride Height

Utility Car                                         5.0-7.0 

Street Car                                         5.0-7.0 

Sports Car                                        5.0-7.0 

Open Wheel Car                             5.0-7.0

High Performance Car                  4.0-5.0

Race Car                                          4.0-6.0 

Race Truck                                          4.5

Prototype Race Car                        3.5-4.5 

Open Wheel Race Car                       5.5

--------------------------------------------------------------------

Rally Car                                          5.0-7.0 

Off-road Car                                   5.0-7.0 

Off-road Truck                               5.0-7.0 

Open Wheel Off-road Car            5.0-7.0 

Off-road Race Truck                      5.0-7.0 

The ranges given are for different body types within the car type.

There are two exceptions:

 

1) Set ride height to lowest if the front ride height can be set below 2 inches

2) Set ride height to highest if the maximum front ride height is below the minimum ride height

Note: Minimum ride height works in 0.5 increments and is most of the time an integer number.

Dampers

Getting damping right is one of the hardest parts when it comes to tuning and from my experience separates good tunes from excellent tunes.

 

Dampers control weight transition during directional changes and while turning. Bump helps you in initiating a directional change or entering a turn while rebound helps to maintain the speed while turning.

 

Setting bump too soft can result into corner diving while braking and entering a turn. Also too soft bump can make the car unresponsive to directional changes and provoking oscillation of the front springs making the car very bouncy. Setting bump too stiff can result in understeer while entering a turn. It also can create rear tire spin while accelerating out of a corner.

 

Setting rebound too soft makes the car oversteer on corner entry and generally unresponsive to directional changes. Setting rebound to stiff creates understeer during corner entry and while turning.

Generally damping stiffness must be set in relation to chassis / suspension stiffness, i.e. a car with more rigid chassis / suspension requires higher overall damping stiffness. Damping stiffness is the sum of bump and rebound.

 

Bump has a direct relation to front car weight and suspension stiffness, i.e. the higher the cars front weight is the higher the bump is required to avoid diving on turn-in. Also cars with stiffer suspension require less bump whereas older cars with softer suspension require stiffer bump. 

Rebound has a direct relation to chassis stiffness, the more rigid the chassis is the higher the rebound must be set. 

Rebound should be most of the time higher than Bump. Exception are open wheel cars where rebound and bump are required to be leveled due to the unique suspension geometry of open wheel cars.

Car Type                                 Rebound           Bump

                                                  (FR Race Suspension)

Utility Car                                  10.0-12.0          5.0-6.0

Street Car                                  10.5-12.5          4.5-5.5

Sports Car                                 10.5-12.5          4.5-5.5

High Performance Car            12.5-16.5          4.5-6.5

Race Car                                    14.5-16.0          5.0-6.0

Race Truck                                 18.0-18.5         7.5-8.0                           

Prototype Race Car                  18.0-20.0         6.0-8.0

Open Wheel Race Car             13.0-14.0       15.5-16.5

Open Wheel Sports Car           6.5-11.5          6.5-11.5

Open Wheel Street Car            7.5-11.0          7.5-11.0

---------------------------------------------------------------------------

Rally Car                                     10.5-12.5         4.5-5.5

Off-road Car                              10.0-11.5         4.0-6.0

Off-road Truck                          10.0-11.5          5.5-6.5

Open Wheel Off-road Car         9.5-12.5         9.5-12.5

Off-road Race Truck                   8.0-10.5         8.0-10.5

The ranges given account for different body types within the car type and weight ranges.

When using rally or off-road suspension damping needs to be scaled down due to the lower damping range as compared to race suspension.

Car Type                                 Rebound           Bump

                                          (FR Rally / Off-road Suspension)

Utility Car                                   6.5-8.5             1.5-2.5

Street Car                                   7.0-9.0             1.0-2.0

Sports Car                                  7.0-9.0             1.0-2.0

High Performance Car              9.0-9.5            1.5-3.0

Race Car                                      7.5-9.0            2.0-3.0

Race Truck                                    10.0               6.0-8.0                           

Prototype Race Car                   7.5-9.5             4.0-6.0

Open Wheel Race Car               6.0-7.0            8.5-9.5

Open Wheel Sports Car           3.0-8.0             3.0-8.0

Open Wheel Street Car            4.0-7.5             4.0-7.5

---------------------------------------------------------------------------

Rally Car                                     7.0-9.0             1.0-2.0

Off-road Car                              6.5-8-0             1.5-2.5

Off-road Truck                           6.5-8.0             2.0-3.0

Open Wheel Off-road Car       6.0-9.0              6.0-9.0

Off-road Race Truck                 4.5-7.0              4.5-7.0

The ranges given account for different body types within the car type and weight ranges.

The relation between front and rear dampers should mirror the relation of front and rear spring rates, i.e. if the front spring rate is lower than the rear spring percentage rate the front dampers should also be lower than the rear dampers and vice versa. 

Front-Rear Spring Rate      Front-Rear Rebound        Front-Rear Bump

Difference                              Difference                          Difference

<1.5%                                                0.2                                         0.1

1.5-35%                                             0.3                                         0.2

36-40%                                              0.6                                         0.4

>40%                                                 1.2                                         0.8

Example: FWD car with front spring rate 50%, rear spring rate is 80%

Spring rate difference: 50%-80% = -30%

Front rebound should be 0.3 lower than rear rebound

Front bump should be 0.2 lower than rear bump

Prototype Race Cars, Open Wheel Cars and Off-Road Race Trucks

Prototype race cars, open wheel cars and off-road race trucks require stiffer rear damping than other cars.

Car Type                                 Rear Damping Offset        

Prototype Race Car                             +3.5             

Open Wheel Race Car                         +3.5 

Open Wheel Sports Car                      +2.5

Open Wheel Street Car                       +2.5 

---------------------------------------------------------------------------

Open Wheel Off-road Sports Car      +2.5

Open Wheel Off-road Car                   +1.5     

Off-road Race Truck                             +0.5 

AWD and FWD Cars

 

AWD and FWD cars require higher front dampers to stabilize the car on corner entry.

                                Front Rebound Offset         Rear Rebound Offset     Front Bump Offset     Rear Bump Offset  

AWD                                      +1.5                                          0.0                                    +1.5                                0.0

FWD                                       +2.5                                          0.0                                    +2.5                                0.0

Mid and Rear Engine Cars

Mid engine cars require reverse setup of front and rear rebound as compared to regular front engine cars. They also require a stiffer rear rebound and front bump than regular front engine cars.

Rear engine cars require reverse setup of front and rear rebound and bump as compared to regular front engine cars. They also require a stiffer rear rebound and rear bump than regular front engine cars.

                                Front Rebound Offset         Rear Rebound Offset     Front Bump Offset     Rear Bump Offset  

Mid Engine                             0.0                                          +1.5                                    +1.5                                0.0

Rear Engine                            0.0                                          +2.5                                      0.0                               +2.5

Relevant Car Upgrades

When reducing weight bump might need to be increased and rebound need to be decreased to compensate for added front weight, for every 100lb front weight reduction rebound needs to increased by 0.1 and bump needs to be reduced by 0.1. Similarily when adding front weight, rebound has to be reduced and bump has to be increased.

When adding aero bump might need to be increased and rebound need to be decreased to compensate for added front downforce, this is usually in the range of 0.1-0.3 depending on amount of added downforce.

Car Property                Change            Effect on Rebound / Bump

Front Weight                 Increase                Decrease / Increase

Front Weight                Decrease               Increase / Decrease 

Front Downforce          Increase                Decrease / Increase

Front Downforce         Decrease                Increase / Decrease 

Brakes

Brake tuning in Forza depends on the type of car and the type of drivetrain. Generally speaking race cars require more braking force on the rear and higher brake pressure than road cars and off-road cars require more braking force on the front and lower tire pressure than road cars.

Car Type                          Brake Distribution        Brake Pressure

                                                        (FR Race Suspension) 

Utility Car                                      50%                                120%    

Street Car                                      52%                                125%    

Sports Car                                     52%                                125%    

High Performance Car                54%                                135%

Race Car                                        56%                                145%

Race Truck                                    56%                                145%

Prototype Race Car                     56%                                145%

Open Wheel Race Car                56%                                145%

Open Wheel Sports Car             54%                                135%

Open Wheel Street Car              54%                                135%

---------------------------------------------------------------------------------------------

Rally Car                                       52%                                125%    

Off-road Car                                 48%                                115%

Off-road Truck                             52%                                135%

Open Wheel Off-road Car          52%                                135%      

Off-road Race Truck                    52%                                135%

 Rally or off-road suspension generally require more braking force on the front as compared to race suspension.

Car Type                          Brake Distribution        Brake Pressure

                                                   (FR Rally / Off-road Suspension) 

Utility Car                                      50%                                120%    

Street Car                                      48%                                125%    

Sports Car                                     48%                                125%    

High Performance Car                50%                                135%

Race Car                                        52%                                145%

Race Truck                                    52%                                145%

Prototype Race Car                     52%                                145%

Open Wheel Race Car                52%                                145%

Open Wheel Sports Car             50%                                135%

Open Wheel Street Car              50%                                135%

---------------------------------------------------------------------------------------------

Rally Car                                       48%                                125%    

Off-road Car                                 48%                                115%

Off-road Truck                             52%                                135%

Open Wheel Off-road Car          52%                                135%      

Off-road Race Truck                    52%                                135%

AWD and FWD Cars

AWD and FWD cars require more braking force on the front and a lower brake pressure than RWD cars.

                            Brake Distribution Offset      Brake Pressure Offset

AWD                                    +2%                                             -5%    

FWD                                     +4%                                           -10%    

Mid and Rear Engine Cars

Mid and rear engine cars require higher braking force on the the rear and a higher brake pressure than regular front engine cars. 

                            Brake Distribution Offset      Brake Pressure Offset

Mid Engine                          -2%                                              +5%    

Rear Engine                         -4%                                            +10%    

Differential

Differential is for fine tuning corner entry and exit behaviour. Also a good ratio between accel and decel supports smooth cornering without unnecessary corrections.

 

Generally older cars require lower accel and higher decel than modern cars and race cars require higher accel and lower decel than road cars. Also off-road cars require lower differential settings than road cars.

 

RWD Cars

74/75 is good middle ground for modern road cars, increase accel and/or decrease decel for cars with more rigid chassis/suspension (i.e. super cars, GT race cars etc.), decrease accel and/or increase decel for cars with more flexible chasssis/suspension (i.e. older cars).

44/45 is good middle ground for modern off-road cars, decrease accel and/or increase decel for older off-road cars with more flexible chasssis/suspension.

45/0 is good middle ground for modern open wheel cars, decrease accel for older open wheel cars with more flexible chasssis/suspension.

36/0 is good middle ground for open wheel race cars

Car Type                                Accel               Decel

                                              (FR  Race Suspension)

Utility Car                               73-74%            75-76%

Street Car                               73-74%            75-76%

Sports Car                              73-74%            75-76%

High Performance Car           75%                  74%

Race Car                                 75-76%            73-74%

Race Truck                                76%                  74%

Prototype Race Car               87-89%               0%

Open Wheel Race Car            46%                   0%

Open Wheel Sports Car       53-55%                0%

Open Wheel Street Car           55%                  0%

-----------------------------------------------------------------------

Rally Car                                  73-74%            75-76%

Off-road Car                           43-44%           45-46%

Off-road Truck                       43-44%           45-46%

Open Wheel Off-road Car       55%                 0%

Off-road Race Truck              43-44%           45-46%

The ranges given account for different body types within the car type.

Rally or off-road suspension generally require 10% lower diff settings as compared to race suspension.

Car Type                                Accel               Decel

                                      (FR  Rally / Off-road Suspension)

Utility Car                               63-64%            65-66%

Street Car                               63-64%            65-66%

Sports Car                              63-64%            65-66%

High Performance Car           65%                  64%

Race Car                                 65-66%            63-64%

Race Truck                                66%                  64%

Prototype Race Car               77-79%               0%

Open Wheel Race Car            36%                   0%

Open Wheel Sports Car       43-45%                0%

Open Wheel Street Car           45%                  0%

-----------------------------------------------------------------------

Rally Car                                 63-64%            65-66%

Off-road Car                           33-34%           35-36%

Off-road Truck                       33-34%           35-36%

Open Wheel Off-road Car       45%                 0%

Off-road Race Truck              33-34%           35-36%

The ranges given account for different body types within the car type.

FWD Cars

49/0 is good middle ground for modern road cars, decrease accel for older cars with more flexible chassis/suspension

Car Type                                Accel               Decel

                                               (FF Race Suspension)

Street Car                               48-49%               0%

-----------------------------------------------------------------------

Rally Car                                  48-49%               0%

The ranges given are for the different body types within the car type.                   

As with RWD cars using rally or off-road suspension generally require 10% lower diff settings as compared to race suspension.

Car Type                                Accel               Decel

                                        (FF Rally / Off-road Suspension)

Street Car                               38-39%               0%

-----------------------------------------------------------------------

Rally Car                                  38-39%               0%

The ranges given are for the different body types within the car type.                   

AWD Cars

For AWD cars use the RWD diff settings as basis and set them according to following scheme:

Front Accel:  RWD Accel 

Front Decel:       0%

Rear Accel:      100%

Rear Decel: RWD Decel

Diff Distr.:   RWD Accel + 2%

Mid and Rear Engine Cars

Mid and rear engine cars require lower accel and higher decel as compared to regular front engine cars.

                                Accel Offset             Decel Offset

Mid Engine                   -12%                          +20%

Rear Engine                  -24%                          +40%        

Gearing

For general road tuning only adjustment of the final drive is required. Tuning single gears ratios is only required when tuning for specific seasons or weather conditions.

Setting up the final drive depends solely on the cars power and the type of installed gearbox. The general logic here is a car with more power requires a lower final drive and vice versa.

There are two types of gearboxes:

  • Standard Forza race gearbox: 6-speed race gearbox with following gear ratios: 2.89/1.99/1.49/1.16/0.94/0.78

  • Custom race gear box (any other race gearbox)

The general principle here is that the installed gearbox is calibrated to the cars stock power. If the car uses the standard Forza race gearbox, the gearing is scaled to a reference car with a stock power of 400hp. If the car uses a custom race gearbox the gearing is scaled to the cars stock power.

Being calibrated means the cars stock gearing is already optimal for the cars stock power. You only have to change the final drive if you change the cars power via engine upgrades. For each 6hp increase over stock power you need to decrease the final drive by 0.01. Likewise for each 6hp decrease over stock power you need to increase the final drive by 0.01

Cars with Standard Forza gearbox and 6-speed sport gearbox

For cars with a standard Forza race gearbox, a 6-speed sport gearbox and a stock final drive > 4.00 the gearbox is scaled to a reference final drive of 4.25.

To get the required final drive subtract the cars power from 400hp (the reference cars stock power), divide it by 6hp, multiply it by 0.01 and add it to 4.25 (the reference final drive).

Example: Car with 325hp, stock final drive 4.21
400hp-325hp=75hp
75hp/6hp=12.5

12.5*0.01=0.125
4.25+0.125=4.375 --> Final Drive: 4.38

Cars with Standard Forza gearbox and 5-speed sport gearbox

 

Cars with a Standard Forza 6-speed race gearbox, a 5-speed sport gearbox and a stock final drive of sport transmission > 4.00 the sport gearbox is scaled to a reference final drive of 4.00.

Cars with Standard Forza gearbox and 3- or 4-speed sport gearbox

 

Cars with a Standard Forza 6-speed race gearbox and a 3- or 4-speed sport gearbox use a higher reference final drive for sport transmission.

For cars with a Standard Forza gearbox, a 4-speed sport gearbox and a stock final drive of sport transmission > 4.00 the sport gearbox is scaled to a reference final drive of 4.75.

For cars with a Standard Forza gearbox, a 3-speed sport gearbox and a stock final drive of sport transmission > 4.00 the sport gearbox is scaled to a reference final drive of 4.50.

Low Gearing Cars with Standard Forza gearbox

There are some cars (like the 1953 Chevrolet Corvette) which require a lower gearing than usual. These are all cars with a standard Forza 6-speed race gearbox and a stock final drive < 4.00.

 

For cars with a Standard Forza 6-speed race gearbox and 5-, 4- or 3- speed sport gearbox a stock final drive for race transmission < 4.00 the race gearbox is scaled to a reference final drive of 3.25.

For cars with a Standard Forza 6-speed race gearbox and a 6-speed sport gearbox and a stock final drive for sport transmission < 4.00 the sport gearbox is scaled to a reference final drive of 3.25.

For cars with a Standard Forza 6-speed race gearbox and a 5-speed sport gearbox and a stock final drive for sport transmission < 4.00 the sport gearbox is scaled to a reference final drive of 3.00.

For cars with a Standard Forza 6-speed race gearbox and a 4-speed sport gearbox and a stock final drive for sport transmission < 4.00 the sport gearbox is scaled to a reference final drive of 3.75.

For cars with a Standard Forza 6-speed race gearbox and a 3-speed sport gearbox and a stock final drive for sport transmission < 4.00 the sport gearbox is scaled to a reference final drive of 3.50.

High Power Cars with Standard Forza gearbox

Cars with Standard Forza gearbox and very high power (>=800hp) that would potentially exceed the available final drive range simply require to half the cars power and do the above calculation.

 

Low Power Cars with Standard Forza gearbox

Cars with Standard Forza gearbox and very low power (<=200hp) that would potentially exceed the available final drive range simply require to double the cars power and do the above calculation. 

Cars with Custom Gearbox


For cars with a custom race gearbox the gearbox is scaled to the cars stock final drive.

To get the required final drive subtract the cars power from the cars stock power, divide it by 6hp, multiply it by 0.01 and add it to the cars stock final drive.

Example: Car with 325hp, stock power 300hp, stock final drive 3.30
300hp-325hp=-25hp
-25hp/600=-0.04166667
3.30-0.04166667=3.25833333 --> Final Drive: 3.26

Relevant Car Upgrades

Increasing or decreasing power via engine upgrades requires to adjust final drive to adjust the gearbox to the changed power band.

Also when performing a drivetrain swap on cars with a custom gearbox requires to adjust the final drive since cars with drivetrain swaps will always automatically be equipped with a Standard Forza gearbox which is scaled to a reference power of 400hp instead of the cars stock power in case of the cars custom gearbox (see above). 

Car Property            Change               Effect on Final Drive

Power                         Increase                       Decrease

Power                        Decrease                       Increase

Drivetrain            Drivetrain Swap         Increase/Decrease1

1 Only for cars with stock custom gearbox

Aero

Aero tuning in Horizon is relatively easy as it depends only on the drivetrain and the installed aero kit.

There are two types of race aero kits:

  • Standard Forza race aero kit: adjustable aero kit with front downforce range 110-220 and rear downforce range 220-441

  • Custom race aero kit  (any other adjustable aero kit)

Cars with Standard Forza Race Aero Kit

For cars with a standard Forza Race Aero Kit setup downforce levels as follows:

  • RWD: front min / rear max

  • FWD / AWD: front max / rear min

 

Cars with Custom Race Aero Kit

Cars with a custom Race Aero Kit and stock drivetrain always require maximum front and rear rear aero:

  • RWD: front max / rear max

  • FWD / AWD: front max / rear max

 

Cars with Custom Race Aero Kit and Drivetrain Swaps

For cars with a custom Race Aero Kit and an installed drivetrain swap setup downforce levels as follows:

  • RWD: front min / rear max

  • FWD / AWD: front max / rear min

High Power Cars

Cars with very high power (>= 800hp for production cars, >= 1.5* stock power for race cars) always require maximum front and rear rear aero regardless of drivetrain and installed aero kit.